
1

test
auto-
mation

The Methodology
for Mastery

test automation

The G.R.I.S.T. ™
Implementation Methodology

2

 “Of the $80 billion spent annually on testing
just 3% is spent on test automation.”

3

A startling statistic. Why such a small proportion? Possibly because
too many automation projects have failed over the years. Possibly be-
cause still too many test automation projects are doomed to failure (even
today!). The tough reality is that a large number of automation projects
never make it past the first few months.

Many issues contribute to this high failure rate. Yet many of the issues can
be avoided with a clear approach. This book details a 5 point approach
that helps to take you through those “make or break” first few months.

The majority of failure are not down to the tools or the people using them.
The tools and the people are good. Good people. Good tools.

It’s the approach taken that’s flawed.

For many there’s an attitude of let’s “buy the tool” then just “get some
training”. From there they expect their team will just start to build auto-
mated tests instead of running them manually. Get the right tool, get a bit
of training and we’ll be fine! Err... no.

It’s an approach that is flawed. A flawed approach that fails most of the
time! You can have good people and good tools. That counts for nothing
if you have a flawed implementation approach.

A flawed approach that leads to failure.

Failure because teams put absolutely no thought into how test auto-
mation is going to become a way of life for them. They put no effort into
changing their systems, processes or way of working.

Test automation is a complete mind set change for a team.

It requires a completely different way of approaching testing. Test au-
tomation is more a DEVELOPMENT PROJECT than it is a test project.
Automation is coding after all.

Introduction

4

Implementation success comes with apply-
ing a proven approach. We’ve taken the term
“GRIST” to help you focus on what’s
important. G.R.I.S.T. is an implementation
model designed to help you see where you
need to take action to deliver the test auto-
mation results you demand.

G.R.I.S.T. is an approach that focuses on structuring and
overseeing the implementation of automation in the Agile
development process. It’s more top down than bottom up.
More “think through the system” for ensuring agile team en-
gagement up front. Less “start building things from scratch”.
More about picking the right tactics to employ once you
know what it is you really need to deliver. In short – a little
more thought up front and far less wasted effort at the back.

1. Goal, Strategy
& Objectives

Define what you
want to achieve.
Once you know what
you want, you can
work out how you’re
going to get there
and which route you
need to take.

2. Reporting

Track your progress
towards your goal. You
might be surprised to find
out that we’re not talking
about the usual test re-
porting components here!
Tracking implementation
progress is critical.

5

5. Tactics

The nuts and bolts. How you construct and implement the tech-
nical aspects of your chosen solution that’s designed to meet your
objectives.

3. Investment

Test automation is expensive.
Whether it’s tools or people,
the outlay is significant. Make
sure you’re tracking and seeing
a return on your investment.

4. Systems

The processes and systems are
important. Putting things in place
at the start save you time and ef-
fort in the long run. Get this right
and larger organisational roll outs
become far simpler.

6

“GRIST”
This little word is the basis of a methodology that helps you

ensure that test automation becomes a way of life. It’s the basis of
a little check list to make sure you stay on track.

The word GRIST meaning...

It’s the definition “something turned to advantage” that is most
appropriate. That’s not important though. What’s important is
what these letters stand for.

* - you’ve probably already completed this step. Possibly all in your head,
rather than on paper. Either way it’s worth having a bit of clarity on these
points before you start.

G

R

I

S

T

What you need is an approach to implementing test automation that
works. For that we’ve come up with the little acronym …

oals, Objects and Strategy*

eporting

nvestment (return on)

ystems

actics

7

In the next few sections we’re going
to take you through the G.R.I.S.T. meth-
odology explaining the concepts and
approach that will hep you succeed with
automated testing.
A methodology that will take you away
from this “purchase a tool with a bit of
training” approach. A methodology that
will have you thinking of automation as a
change to your way of working and way
of life.
A change that starts with having your
Goals clear right from the start.

“ If the ladder is not leaning against the right
wall, every step we take just gets us to the

wrong place faster.” – Stephen Covey

I’m pretty sure Stephen Covey didn’t have
Test Automation in mind when he wrote
this. Yet it’s very apt. Too many teams lean
their automation ladder up against the
wrong wall. They aim for the wrong goal.

No prizes for guessing what the ‘G’ in GRIST
stands for then! Well actually it’s about
more than just the goal. It’s about...

oals, Objects and Strategy*

eporting

nvestment (return on)

ystems

actics

Section 1 : Are you building
a ladder or installing a lift?

8

 Goals, Strategy and Objectives

Why should you care about this? Because most companies spend a
huge amount of money and time building test automation and don’t
even realise that they’ve built the wrong thing!

It’s not uncommon to see a solution that is:

A. so complicated and un-maintainable that only a few automated
tests run reliably.

B. Nine out of 10 people in their team find it too complicated to use.

C. The rate at which reliable automated tests are added is painfully
slow.

You only need take one step back too see that it would have
been cheaper, and better, to have just run the tests manual-
ly.

This is why you need to be clear about your Goals, Objec-
tives and Strategy up front. Then.... and only then.... will you
build the RIGHT solution for your team and your project!

To borrow from a good article on Medium these aspects can
be defined as follows:

GOAL — A broad primary outcome.

STRATEGY — The approach you take to achieve a goal.

OBJECTIVE — A measurable step you take to achieve a
strategy.

TACTIC — A tool you use in pursuing an objective aligned
with your strategy.

9

Now Tactics we’ll come on to in stage 5 of our GRIST methodology (no
- no prize for guessing what the ‘T’ in GRIST stands for either). Most
inexperienced automation engineers start with tactics and build up
from there. They find a Selenium framework, pick a coding language
and start building. And by that time it’s all toooooo late!

Anyway, let’s go back to our “Ladder” analogy and look at Goals first.

Think carefully about your goal. Do you really want to invest sig-
nificant amounts of time and money to be right at the top? Or would
the 5th floor be a more reasonable goal?

Your goal might be, for example:

‘Within 12 months have a regression pack containing all our high
priority +ve test scenarios for product XYZ. This will run every night
in our stable test environment. Everyone in our team should be able to
contribute new tests and maintain this regression pack.’

You should be able to asses your success against this stated goal. It
needs to be attainable. For example there is NO point writing auto-
mated tests if you DON’T have a stable test environment to run them
in!

10

With your goal in mind then, answering these questions will help you
identify your strategy:

•	 Are you going to bring in a full time automation engineer?
•	 Are you going to use existing development resources or

outsource?
•	 How are you going to find time to write automated tests?
•	 Will you have budget to purchase tools that allow you

to implement faster?
•	 Will you use open source tools that will suck up development

resources?
•	 Roughly what will your approach to reporting and tracking be?
•	 How and where will you define your processes and systems?
•	 What will your approach be to building team engagement?

If you need to get to the 5th floor, is a ladder really going to cut it? Or
should you be looking at a strategy based on installing a lift?

You can go designing and building your own ladder if you want! BUT,
you’d probably be better off paying someone to install a lift... Expen-
sive? Yes. Easy for everyone to use and faster? Definitely, YES!

A well defined goal will help you work out strategies that you can
apply work here. If you want everyone in your team adding automated
tests then don’t build something that requires a lot of coding and a
good understanding of OOP.

11

If your goal is to have everyone in your team writing automated tests
you might start out defining a strategy along these lines...

Strategy Option 1:

‘We’ll purchase an easy to use automation tool, build a new dedi-
cated stable test environment, invest in setting up a continuous test
process......’

Another strategy you could use might be along the lines of....

Strategy Option 2:

‘We’ll out-source our automated testing, providing detailed test case
definitions to an off site company who will......’

Both valid strategies but only one will get you to the goal of having
everyone in your team adding and maintaining automated tests.

Your goal should lead you towards the type of strategy you’ll apply.

And your strategy leads you neatly into your Objectives....

12

Think of your objectives as a few targets that will get you to
your goal, using the strategy you’ve settled on.

If you need to get one person to the 5th Floor, once every 3 months
then a long (very long) ladder will do. If you need to get a lot of peo-
ple to and from the 5th Floor 24 hours a day then building your own
ladder isn’t a smart move.

Start to map out a path towards hitting your goal. For example...We’ll
reach point X in 1 months time, hit target Y within 3 months and arrive
at our goal within 12 months. An objective might look like this then,

“Our objective is to write 10 automated tests a day and execute every
test in our automated regression pack at least once a week.”

Success with automation is largely about adding good numbers of,
high quality, reliable tests over a decent period of time. That’s why
having good objectives is important! Good objectives will also help
you see if your strategy is appropriate!! If you start building your
own ladder your chances of hitting that objective are slim!

At this point we’ve defined our goal, come up with a strategy that we
like and we’ve set some objectives. Now we need to iterate.

Work down again from the goal, through your selected strategy and to
your objectives. Then consider them all in relation to each other.

If your goal is to get lots of people to and from the 5th floor of an office
block, AND you need to do that every hour AND you have the funds to
install a lift THEN everything fits together.

If you’re looking to get to that 5th floor AND you can only afford to build
your own ladder AND the people you have to do the job are scared of
heights.... THEN you might as well give up now.

13

I’d prefer it if you didn’t give up now though. So long as your Goal,
Strategy and Objectives all fit together there’s no reason why this
shouldn’t be a resounding success.

That is, so long as you’ve thought through the ‘R’, ‘I’, ‘S’ and ‘T’ in GRIST
too.

We’re on to the ‘R’ in G.R.I.S.T. and considering our
reporting requirments. The usual pass/fail test results are
important BUT they’re not really important.
In fact they’re absolutely worthless if they’re wrong or not
showing you what matters.
What is important, is data that shows you how YOU are
doing. Early on you want to focus on the quality of YOUR
automation system. Not the quality of the application
under test.
I can not emphasise this enough. This is one of the most

important success factors. At the start of your
automation project track data that shows you how your automation
project is progressing.

Section 2 : What’s really important?

“ If you can’t measure it, you can’t improve
it.” – Peter Drucker

14

Why? Because in the early days ‘shiny object syndrome’ will be
clouding everyone’s view. It’s not that carefully crafted project plan.
It’s not that new automation tool you invested thousands in. And it’s
not that external consultant you brought in. It’s NOT those things that
ultimately make automation a success.

What makes it a success is a day in, day out, HABIT.

“Fantastic!” You have the budget and resources to employ a full time
team of automation engineers (by the way - if you can afford it this is
the best way to deliver on test automation). It’s just that many of us
don’t have access to dedicated automation resources. We don’t have a
dedicated automation engineer in our compact little Agile team.

Keeping the momentum going on your automation project is probably
going to come down to you and a couple of others in your team. All of
whom have a million and one other tasks to do.

So my question to you is this....

“How will you keep going with test automation on days when every-
thing else feels like it’s a higher priority?”

In my experience it comes down to habit. You’ll want to develop your
automation efforts into a habit as quickly as possible. One way to go
about this is with an approach known as

“Motivation is what gets you started. Habit
is what keeps you going.” – Jim Rohn

15

 “Using accountability to stick to your habit”

In short though, using accountability means demonstrating to your
peers that you’re making progress.

Think about finding a way to measure and report on a few small as-
pects of your plan. I’d suggest tracking on three things....

	 1. Test Development
	 2. Test Environment Stability
	 3. Test Case Quality

From the outset you need to start thinking about how you
can improve your processes and systems around test auto-
mation. To improve these processes you need to measure
them. And you need to make those measurments visible!

You should assume that at some point things will start
slowing up. If there’s no visibility of this you can guarantee
that eventually things will grind to a halt. If there is visibility
then you’ll know when to start taking corrective action.

If you’ve set some objectives (See the ‘G’ in G.R.I.S.T.) then you can
monitor your progress against those objectives. You don’t have to be
totally accurate. It’s not the exact numbers you care about. What you
care about is the trend!

You want to see data and trends on these three things:

16

1. Test Development
No point having the most advanced framework
and infrastructure if you’re running only a hand-
ful of tests that give you very little coverage. You
want to get into that habit of adding tests every
day. You might start developing small, easy to au-
tomate tests. Just make sure you start and that you get into that habit.

A simple chart showing number of automated tests added is a good
place to start. It’s usually quite simple to automate the creation of this
chart too. However you do it, you and your team, need visibility of how
many new test are being added each day. This is a simple but effective
way to keep you on track.

2. Test Environment and Test Data Is-
sues
Getting to the point where you and your team
have complete confidence in your automated test
results takes commitment. You will be challenged
by test environments that don’t behave as ex-
pected. You will struggle with test data that’s set
correctly on one test run and invalid on the next.

You’ll want to track when tests fail due to environment or data issues.
Maybe you’re better off focusing on improving test environment
stability rather than writing new tests? Reporting in this area will help
convince others that something needs to be addressed here.

3. Test Case Quality

In the early days of implementing test automation your tests will be
unreliable. It’s code testing code. Your automated tests are going to
need ‘testing’. Picking up on unreliable tests early on so that they can
be fixed or eliminated is essential.
You do NOT want to spend a lot of time analys-
ing failed tests ‘where the issue is‘ the “test” and
not the “application under test”. Focus effort on
getting tests stable right up front. It’ll save you
significant amounts of effort later.

17

In the early days take it as a given that your test environment will be
unstable. Your tests will be unreliable. That you’ll be distracted by a
million other competing priorities. If you think you’ll end up with a
perfect automation process from day oneyou’re in for a shock.

If you have a few simple data points to identify issues early you’ll be
able to correct things early.

Make sure you have a few ‘publicly visible‘ data points that encourage
you into the “habit” of writing good automated tests.

Ask yourself this....
“Which option is going to be more cost effective, more reliable and

faster? Manual or automated testing?”

This is a difficult question to answer. Many companies waste a lot of
time, money and effort finding out the hard way.

Developing stable and reliable automated tests in complex
environments is NOT easy. It’s not always a quick win. It’s a significant
investment.

The ‘I’ in G.R.I.S.T. Stands for
“Investment”. To be more accurate it’s
the “Return on Investment”

Easy to calculate when viewed like
that. Not so easy in the real world.
What’s worse is that it tends to imply

Section 3 : Are You Really Seeing
A Return on your investment?

18

that it’s a one off calculation, defined at the start of the project. It’s a
figure that’s just plugged into some business case from day one.

At the start this calculation is usually nothing short of a COMPLETE
GUESS. A guess that’s NEVER validated. A guess that’s never adjusted.

What if.... you actually tracked this over time?

What if.....You actually put real figures in each time you ran a test?

What if.... you could visually see when you’re going to break even and
start seeing a return?

What if..... you could spot changes in your rate of return so that you
could take corrective action?

This is where we want to get to. If you have this information then
you’ll be able to answer three critical questions...

1. Should we continue to pursue this?
2. Are we happy to continue making a loss whilst we work towards
making a return?
3. What do we need to adjust to make sure we ARE making a Return
on our Investment?

Trouble is you can’t answer ANY of this until you work out what your
Return on Investment really is. And, to get to that point you need to
understand…..

The Issues with Traditional RoI Calculations
Many automation projects don’t provide an RoI. Harsh fact of life! The
question is how do you know? Well most teams don’t know because
they don’t pay attention to three key issues.

First IT’S NOT a static value. It is not a “calculate once” then forget

19

exercise. It is not a guessed value that’s just fed into the business
plan to get justification for your automation project. RoI is something
that should be calculate regularly. Even dynamically. Calculated every
time you create and run tests.

Secondly, most companies miss out figures like test maintenance
and test environment management. Both of these suck up significant
amounts of time. This all eats into into your RoI. Start tracking this and
you can start fixing it.

Thirdly, the RoI data is not detailed enough to help you improve.
Maybe it’s just a handful of bad tests that result in your poor RoI.
Maybe it’s a poor RoI on the tests written for a complete application.
Maybe the application doesn’t lend itself well to automation. Maybe
you’ve bought the wrong tool. Maybe the automation engineers don’t
have enough experience. Either way you need to find a way to identify
these issues.

YOU don’t know any of this until you start tracking the RoI.

So what does happen when you ...

 A. Track RoI continuously?
 B. Track all the data points that are important?
 C. Have figures that help identify where the issues are?

When you start tracking and identify where the issues are, you learn
and you improve.

In short you get an early
warning system that
directs your actions!

20

The Test Automation Barometer
Why do you really want to track RoI in test automation? Because
when you track this right you get an effective early warning system.
An early warning system that’ll help you see bad weather when it’s on
the way.

We get so caught up in the day-to-day process of ‘doing’ automation.
We forget to look up and asses what it’s there for. When you have
the RoI barometer in place you have that daily weather forecast. A
reminder that you need to poke your head out of the window and see

what’s really going on.

Don’t get me wrong. It’s NOT
the ONLY indicator. This has to
be considered in conjunction
with other indicators. You may
accept a poor RoI in the first few
sprints as skills build and the
volume of tests increases. What’s
important though, is that YOU
KNOW!

Maybe it’s just fine that you don’t see a return on the investment for 6
months. It may be that automation gives you something you can’t very
well do with human testers. You may accept that this is an investment
for the future. An investment that comes to fruition as the process
matures throughout your organisation.

21

You’ll never know though without a barometer. With a barometer
you get see when things start changing. With a barometer you know!

And when you know, you can adjust. You can tweak. You can improve.

Tip the Automation Scales In Your Favour
With a barometer in places it far easier to get in to the ‘looking for
improvements’ mindset. When you’re in that mindset it’s far easier to
tip the test automation scales in your favour.

You’ll find yourself looking for
the easy wins upfront. You’ll start
finding the simpler routes to
automating tests. You’ll have RoI
at the front of your mind and be
focused on getting a fast pay back
from test automation.

Ultimately this is about finding the most efficient, cost effective, way
to improve the quality of your releases. If you just think implementing
automation is the solution then sure, you might want to start out with
automation. You just wont see any real benefit.

Understand that automation is expensive but worthwhile when you’re
focused. Having a barometer in place keeps you focused.

That barometer allows you to demonstrate - with evidence - that the
investment is paying off.

Strategy requires

22

How can you make that transition from replaceable cog to the one
delivering the unique contribution? Step back and focus on the test
process ‘Systems’.

And guess what? The ‘S’ in G.R.I.S.T. stands for ‘Systems’. We can
start delivering that unique contribution when we start focusing on
constructing better systems rather that being a small part in existing
systems.

It’s the design, construction and improvement of ‘Systems’ that’s key
to test process improvement. Systems to take care of common, day to
day, test processes. We should be building systems and processes that
make everything repeatable and automated. Not automated in the
sense of automated tests. Automated in the sense of test processes
operating on autopilot.
This is the concept of ‘systatmising’ (I really dislike this word but if

Section 4 : Why Is It All About The Systems?

“There’s a huge difference between being a
replaceable cog on the assembly line and being

the one who is missed, the one with a unique
contribution, the one who made a difference. ”– Seth Godin

23

feels appropriate here) the processes you follow. You take a test pro-
cess that your team follows. Then you put a system in place that runs
that process like a production line or conveyor belt. Then you have
repeatability. With repeatability comes consistency, reliability and
speed.

What You Don’t Want Is Inconsistency and Unreliability
Inconsistency and unreliability creep in when you DON’T pay atten-
tion to building the systems. If you don’t look to build and improve
these systems everything slowly comes down to run at a snail’s pace.
Ultimately you end up with test processes that you have no confi-
dence in. You end up with something that doesn’t meet the demands
of today’s fast paced agile teams. YOU fail to deliver.

However, get the systems right and you’ll be able to concentrate on
creating the quality and quantity of automated tests that will make a
difference. Less time wasted on day to day trivia and more time focus-
ing on what matters. What matters is designing, building and running
great tests.

The Three Most Important Systems
The three most important systems from the automated testing per-
spective are....

1. Test Development and Test Execution
2. Test Environment Management
3. Test Data Management

Let’s take a look at each of these in turn.

24

1. Test Development and Execution
Look to streamline the development, testing and execution
of your automated tests. Most of this process can be put on
autopilot. Granted the test automation development step is
somewhat of a manual process (we haven’t quite hit the point
where AI is designing our tests for us). The rest (source code
control, testing the automated tests, executing the tests, etc)
should be on autopilot.

2. Test Environment Management
Test environment management is never an easy one. Most
systems we’re testing have tentacles reaching into so many
other systems. That makes it difficult to reliably instantiate
new instances of your test environment as part of an auto-
mated process. Difficult but well worth investing time in.
Clean, well managed, test environments simplify so many
other parts of the systems we build. The payback for the
effort invested in this area is significant. Don’t shirk this area
because it looks too difficult.

3. Test Data Management
Test data management is another difficult, but essential,
area. With start up projects it can be easy to backup and
restore databases for test environments. Trouble is in start
up mode most teams don’t think this is a priority. Then it gets
left till it’s not so easy to address. And it’s not so easy once
the system has grown beyond it’s embryonic stages. Some-
times just having scripts to monitor your test data can be a
simpler solution. An alert that tells you your test data has
been compromised is usually a good first step. Reliable auto-
mated testing depends on you solving this problem.

All of these parts are essential parts of a CI, CD and CT approach. The
parts you focus on will probably be part of the bigger picture. What is

25

essential though is that you need to solve these issues. You must get
to a point where you have a reliable automated testing capability. You
need to solve these three problems with systems and process that you
can operate on autopilot and depend on.

Build Your Conveyor Belt
The solutions you develop around these three core systems are criti-
cal. Critical because the repeatability these systems deliver give you
conveyor belt like….

A. Consistency
B. Reliability
C. Speed

Consistency means that
everyone in your team
knows what’s happening.
Reliability helps build trust across the whole team. And speed... well
who doesn’t need higher release speed these days?

This should all be running like a conveyor belt. You start with test
design at one end of the conveyor belt. Then automated tests drop off
the other end of the conveyor belt. They drop off as reliable automat-
ed test that everyone can depend on.

What you do NOT want is people in your team manually walking
bits from one part of the factory to the next. Manually tweaking and
fiddling with different bits and causing bottlenecks. A well designed
conveyor belt avoids this. Well designed ‘Systems’ avoid this.

More than this, well designed ‘Systems’ free up time to let your team
do what they do best. What they do best is designing and writing good
tests.

26

The ‘T’ in G.R.I.S.T. is for tactics. The last component of the G.R.I.S.T.
Methodology. As Max Euwe says this is more about the observation
and the actions you take on a day-to-day basis.

If you’re wondering how your Goals, Strategy and Tactics all relate
then there’s a great definition of the word ‘Tactics’ in the Business
Dictionary. Here they define tactics as a...

Means by which a strategy is carried out; planned
and ad hoc activities meant to deal with the demands
of the moment, and to move from one milestone to
another in pursuit of the overall goal(s).

We defined the goals and strategy when we
looked at the ‘G’ in G.R.I.S.T. Now we’re on the final
component. The Tactics that will drive us towards
the goals we set at the start.

The only slight problem with tactics is that it’s all
encompassing. It covers a multitude of things in
our automated testing game.

Everything from the ability to write code, skills
to build systems, the creativity to design tests, the
due diligence to analyse test results regularly, etc.

Section 5 : It All Comes Down To Tactics

“Strategy requires thought, tactics require
observation ”– Max Euwe

27

Which Tactics Should I Use?
Which tactics you use will come down to the types of people you
have in your team. It will take into account the tools you have at your
disposal. You’ll also need to anticipate the demands of the application
you’re testing.

It’s very difficult to be specific about which tactics you should employ
in your specific project. Every team, every application under test and
every tool set demands different tactics. And of course depending on
what stage you’re at in a project will dictate which tactics you employ
at that point in time.

You have to pick and deploy the right tactics to mould your team into the
shape that is best suited to delivering your Goals, Strategy and Objectives.

Let’s take a simple example to start with. Let’s say your objective is to
develop automated tests within your team (not outsource to an exter-
nal team). Your tactics would revolve around learning about automa-
tion tools and picking up test development skills (coding).

Alternatively, If your objective was to outsource your automated
testing then your tactics would revolve around things like learning to
manage remote teams, defining clear test specifications and agreeing
delivery criteria. Your tactics would be more about the ‘managing’
rather than the ‘doing’.

You need to decide which tactics to use in each of these areas. You
need to decide after observing the situation and considering your
overall Goal and Strategy.

28

To keep it simple lets just spilt tactics down into 2 general catego-
ries:

1. Defensive - reactive actions that deal with
what’s going on right now

2. Offensive - proactive actions that anticipate
what you think will happen in the future.

Maybe you’re thinking about which action to
take to solve a problem or improve part of your
process. Rather than just pick the first tactic that
comes to mind think about your overall goal and
objective. Then you might think “do we need a
Defensive or Offensive tactic to help us hit that
objective”?

Types of Tactics
There are many ways to look at tactics. Hundreds, possibly thousands,
of different tactics you could employ. You can add to the complexity
here by defining many different ways of categorising tactics too.

29

An Example
A couple of examples might help. Your automated tests are failing
because of stability issues. You need to employ tactics around building
robustness into your automation solution. You can employ defensive
or offensive tactics to solve this. You could even employ both. Defen-
sive - Short term deploy code fixes targeted as specific automated
tests that have problems. Turn off automated tests that aren’t reliable,
can’t be fixed easily and waste lots of analysis time.

Offensive - Medium term you might decide to look at im-
plementing a new framework or even see if you can find
a new tool. You might convert some GUI tests in to API
tests. You could look at solutions that makes it easier to
develop stable automated tests in the first place.

This way of thinking your actions through helps be-
cause it forces you to take a step back. You take a step
back and think about the best tactics to deploy to hit
your overall goal.

Yes you might need to do
something right now to solve
a problem (Defensive). Is this
initial tactic going to take you
towards your overall goal
though? If not what’s the Offensive tactic
you need consider too?

30

The Yin and the Yang
Keep the following in mind when you think about tactics. Remember
that it’s more about the actions you take when responding to current
events and conditions. Day to day demands may force those tactics in
a particular direction. They may even drive you away from your stated
goals and objectives.To keep things in alignment it’s worth looping
back from the ‘T’ in G.R.I.S.T. to the ‘G’. Make sure your Goals are still
relevant. Spend some time making sure your Goals and Tactics are
aligned.

Are the tactics you’re employing day-to-day really aligning with your
Goals? If not maybe it’s time to look at re-evaluating your Goals and
the associated Strategy. No shame in that. In fact a recalibration of the
Goals and Strategy is one of the healthiest things you can do.

Or maybe the tactics you’re employing aren’t the ones you need in or-
der to hit the goal. In which case maybe it’s time to think harder about
the tactics you implement each day. Maybe fundamental changes in
your team and/or technology are required to enable you to employ the
tactics you really need.
Either way the success of your automation projects depends on clarity
and consistency. It depends on you making sure everyone is pulling in
the same direction. Everyone looking to achieve the same goal. Em-
ploying the right tactics to hit that goal.

31

Often the tactics you feel you have to employ may seemingly be at
odds with the goals you want to hit. Your tactics might seem contrary
to your goals. Yet these seemingly contrary forces can be more com-

plimentary than you thought. There will always be a bit of “Yin and
Yang” between your Goals and your Tactics.

This is healthy. You may as well embrace it.

32 (c) Traq Software 2019

